

Z-Fiber High-End Laser mit aktiver Kühlung

Die Laserbaureihe ZFSM wurde für die anspruchsvollsten Messverfahren auf dem Markt entwickelt. Überall dort, wo außergewöhnliche Strahleigenschaften für hochauflösende Messungen oder der Einsatz in der Medizintechnik erforderlich sind, ist die ZFSM-Serie die richtige Wahl. Je nach Anforderung kann der Benutzer aus blauen, grüne und rote Wellenlängen auswählen.

Die Projektionsqualität ist besser als auf dem freien Markt verfügbare Freistrahlerlösungen. Der Laser ermöglicht zusammen mit seinen intelligenten Überwachungsfunktionen eine hohe Leistungsstabilität.

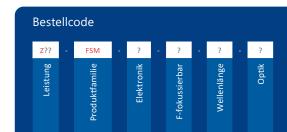
Der Laser ist aufgrund seiner Kommunikationsschnittstellen (RS-232 & I²C) effizient integrierbar in anspruchsvolle Bildverarbeitungs-, sowie Medizin- und Analytikanwendungen.

Highlights

- Single-mode Faser mit FC/PC Anschluss
- Einzigartig homogene Linien und μ-Optiken für dünne Linien (<15 μm [1/e²])
- Rote, grüne und blaue Wellenlängen
- Optische Ausgangsleistung bis zu 35 mW
- < 15 μm bei FWHM
- M² <1,05

- Analoge und gleichzeitige TTL-Modulation bis zu 200 kHz
- Höchstmaß an funktionaler Sicherheit für kritische Anwendungen
- OEM-Variante ohne Gehäuse und TEC erhältlich (PCB-Version)

Bildverarbeitung


Triangulationssensoren

Analytik

3D-Vermessung

Systemspezifikationen

Wellenlänge	nm
Wellenlängentoleranz	nm (typisch)
Wellenlängendrift	nm (temperaturstabilisiert, über gesamten Betriebs-temperaturb- ereich)
Ausgangsleistung	mW
Transversalmode	(typisch)
RMS noise (20 Hz bis 20 MHz, typisch)	%
Peak-to-Peak Noise (20 Hz bis 20 MHz, typisch)	%
Boresight error ⁽¹⁾	mrad (typisch)
Pointing stability	μrad / (°C / K)
Leistungsstabilität (1h)	%
Anlaufdauer	S
Betriebsart	

450	520	635-685	785-830
±10	-5 +10	±5	±10

< 1

≤ 35	4.25		
_ 00	≤ 35		
Single Transversal Mode			
< 0,5			
<1			
<3			

< 10

< 1 im Dauerbetrieb

< 5

Leistungsstabilisiert (integriertes TEC)

Elektrische Spezifikationen

Versorgungsspannung	VDC
Betriebsstrom	A
Schutz	
Elektrische Isolation	
Anschluss	
Leistungsaufnahme	W
Schnittstellen	

5 - 30

Max. 3

Übertemperaturschutz und LED Störungsanzeige, Verpolungs- und Transientenschutz (ESD, Burst & Surge)

Potentialfreies Gehäuse

M12 Stecker 4-pin, Sub-D Stecker 9-pin

< 15

I²C, RS-232

Optische Spezifikationen

Öffnungswinkel ⁽²⁾ μ-Optiken	° Grad
Öffnungswinkel ⁽²⁾ Standard	° Grad
Liniengeradheit ⁽³⁾	% (von Linienlänge)
Linienhomogenität ⁽⁴⁾	% (typisch)
M^2	
Punkt	
Fokusbereich	mm
Klassifizierung	

10, 20 (homogenes Linienprofil)

10, 20, 30, 45, 60, 75 (homogenes Linienprofil)

< 0,05

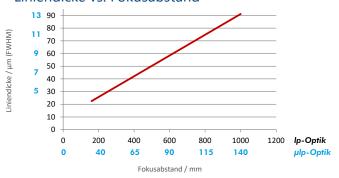
±10

SM < 1,05

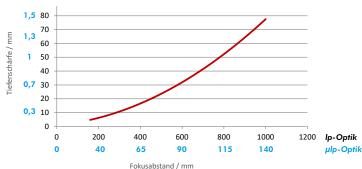
Zirkular

40 - 150 (μlp) und 150 - 10.000 (lp)

IEC 60825-1:2014


IEC 60601-2-22 (für Laserschutzklassen 3R und 3B)

Fussnoten


(1) Boresight error	Auch: Schielwinkel
(2) Linienlänge / Öffnungswinkel	bei > 13,5 % Imax
(3) Liniengeradheit	Abweichung von der idealen Geraden über mittlere 80% der Linie, bezogen auf homogenes Linienprofil
(4) Linienhomogenität	Maximale relative optische Leistungsunterschiede über mittlere 80% der Linie, bezogen auf homogenes Linienprofil

Liniendicke vs. Fokusabstand*

Tiefenschärfe vs. Fokusabstand*

Wellenlänge		Berechnungsfaktor für Liniendicke		Berechnungsfaktor	für Tiefenschärfe
		μΙρ	lp	μΙρ	lp
Blau	450 nm	1,00	1,00	1,00	1,00
Grün	520 nm	1,10	1,10	1,10	0,80
Rot	640 nm	1,20	1,20	1,20	1,00

⁻ μ/p: μ-line Powell; besonders dünne Linien, jedoch mit kleinerem Tiefenschärfebereich (nur erhältlich für Öffnungswinkel 10° und 20° für Abstände < 150 mm)

In den oben abgebildeten Grafiken können die Werte für Liniendicke und Tiefenschärfe eines 450 nm-Lasers abgelesen werden. Um die entsprechenden Werte für eine andere Wellenlänge zu ermitteln, müssen die abgelesenen Werte mit dem Faktor in der Tabelle verrechnet werden.

Beispiel: 450 nm-Laser fokussiert auf 90 mm Arbeitsabstand:

Liniendicke ca. 9 μm (@ μlp** Optik); Tiefenschärfe ca. 0,7 mm (Werte aus den Grafiken)

Berechnung: 640 nm-Laser fokussiert auf 90 mm Arbeitsabstand:

Liniendicke ca. 9 μ m x 1,20 = 11 μ m; Tiefenschärfe: ca. 0,7 mm x 1,20 = 0,85 mm

Software

GUI Serielle Kommunikation I²C und RS-232 (5 V) Funktionen (z.B.): Statusabfrage

Überwachung der Ausgangsleistung

Systemkonfiguration Digitale Modulation Intensitätskontrolle Anzeige der Lebensdauer

Klassifizierung Software nach IEC 62304

Digitale Modulation

Maximale Frequenz	kHz	bis zu 200
Rise time (Mod High → 90%)	ns	< 650
Fall time (Mod Low → 10%)	ns	< 350
Signalpegel	V	VIL_max < +1,2 VIH_min > +2,8
Max. Spannungsbereich	VDC	0 - 30

Analoge Modulation

Maximale Bandbreite	kHz	< 100
Linearität	%	< 5 (von 10 % zu 100 % der Laserleistung)
Aktiver Bereich	VDC	0 - 2
Impedanz		100 kΩ zu interner VCC (3,3 V)
Max. Spannungsbereich	VDC	0 - 30

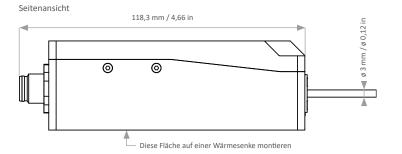
Umgebungsbedingungen

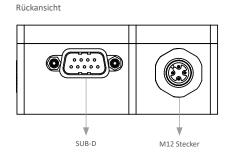
Umgebungstemperatur	°C °F
Lagertemperatur	°C °F
Luftfeuchtigkeit	%
Verlustwärme	W

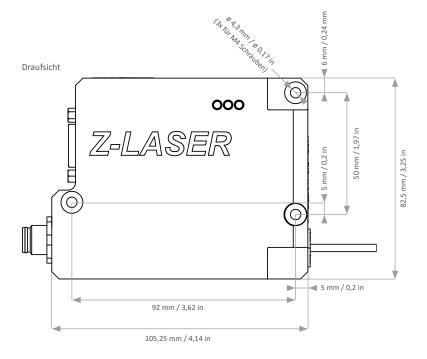
-10 bis +50 -14 bis 122 (Gehäuseversion) 0 bis +50 32 bis 122 (PCB-Version)		
-20 bis +80 4 bis +173		
< 90 %, nicht kondensierend		

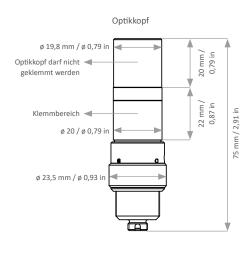
⁻ Ip: line Powell; Standard-Setup für Fokusabstände < 150 mm

^{*} Werte der Tabelle bei homogenem Linienprofil

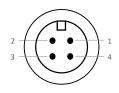

^{**} Öffnungswinkel




Mechanische Spezifikationen


Gewicht Kopf Elektronik (Gehäuseversion):	g Ibs g Ibs
Abmessungen	mm inch
Kopfdurchmesser ø	mm inch
Material	
Schutzklasse	
Befestigung	

60 0,13 410 0,9
Gehäuse 105,25 x 82,5 x 36,6 4,14 x 3,25 x 1,44 Platine 70 x 60 2,76 x 2,36 (PCB-Version)
Faserlänge 450 17,72 (zzgl. FC / PC Stecker)
20 0,79
Aluminium (schwarz eloxiert)
IP 50
20 mm Halterung



M12 4-Pin: A-Pining Steckverbinder

1	5 - 30 VDC, 20 VA
2	Digitale-Modulation TTL
3	GND
4	Analoge-Modulation (0-2 VDC)

