

ZQ1 Kompaktes Hochleistungsmodul

Die Laserbaureihe ZQ1 wurde für die anspruchsvollsten Messverfahren auf dem Markt entwickelt. Überall dort, wo eine hohe Ausgangsleistung, gute Strahleigenschaften und industrietaugliches Design erforderlich sind, ist die ZQ1-Serie die richtige Wahl. Dank der werkzeugfreien Fokussierung kann der Benutzer den Arbeitsabstand des Moduls optimal an die Anwendung anpassen. Der Laser ermöglicht zusammen mit seinem intelligenten Überwachungsfunktionen auch in rauen Umgebungen eine hohe Leistungsstabilität. Die integrierte aktive Peltierkühlung unterstützt diese Funktion, da sie die Laserdiode konstant im optimalen Temperaturfenster hält.

- Konstant hohe Produktqualität durch automatisierte Herstellungsprozesse
- Optische Ausgangsleistung bis zu 2,5 W (450 nm)
- Standard Wellenlängen von 405 – 830 nm
- Manuell fokussierbar
- Integrierte aktive Kühlung
- TTL Modulation bis zu 200 kHz
- Analoge Intensitätskontrolle
- IP 67

- Zertifiziert gemäß Bahn-Norm DIN EN 61373:2011-04
- PC-Steuerung mit grafischer Benutzeroberfläche

Bildverarbeitung

Schieneninspektion

Analytik

3D-Vermessung

Systemspezifikationen

Wellenlänge	nm
Wellenlängentoleranz	nm (typisch)
Wellenlängendrift	nm (temperaturstabilisiert, über gesamten Betriebstempera- turbereich)
Ausgangsleistung (elp)	mW
Ausgangsleistung (slp)	mW
Transversalmode	
RMS noise (20 Hz - 20 MHz)	%
Peak-to-Peak Noise (20 Hz - 20 MHz)	%
Boresight error ⁽¹⁾	mrad (in x & y)
Linienausrichtung ⁽²⁾	mrad
Pointing stability	μrad / K
Höhe Strahlaustritt ⁽³⁾	mm
Leistungsstabilität (24h)	%
Aufwärmdauer	min
Betriebsart	

405	450	520	640	660	760	808	830
±5	±10	±10	±5	±5	±5	±10	±5

< 1

≤900	≤2500	≤800*	≤1000	≤1000	≤1700	≤1700	≤1700
≤800	≤2100	≤700	≤800	≤800	≤1200	≤1200	≤1200

Multi Transverse Mode

< 0,5

< 1

< 5

< 10 | Ausrichtung parallel zur Grundplatte

< 6

28,3

< 1

< 2

APC

Elektrische Spezifikationen

Versorgungsspannung	VDC
Betriebsstrom (max. bei 25 °C)	A
Schutz	
Elektrische Isolation des Gehäuses	
Anschluss	
Leistungsaufnahme	W
Schnittstellen	

12 - 24

< 4

Übertemperaturschutz und LED Störungsanzeige, Verpolungs- und

Transientenschutz (ESD, Burst & Surge)

Hochohmig mit Masse verbunden (1 $\mbox{M}\Omega)$

5-pin M12 Stecker; 8-pin M12 Stecker (Kommunikation)

< 40

I²C, RS-232

Optische Spezifikationen

Öffnungswinkel ⁽⁴⁾	Grad °		
Liniengeradheit ⁽⁵⁾	% (von Linienlänge)		
Linienhomogenität ⁽⁶⁾	% (typisch)		
Punkt			
Fokusbereich	mm		

5, 10, 20, 30, 45, 60, 75, 90 (homogenes Linienprofil)

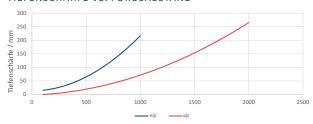
< 0,1

< 25

Punkt elliptisch

100 bis 10.000

Fussnoten


* (520 nm elp: ≤800 mW)	demnächst verfügbar
(1) Boresight error	Auch: Schielwinkel
(2) Linienausrichtung	Auch: Roll, mit Referenz zur Grundplatte
(3) Höhe Strahlaustritt	Abstand der optischen Achse zur Grundplatte
(4) Linienlänge / Öffnungswinkel	bei > 13,5 % _{max}
(5) Liniengeradheit	Abweichung von der idealen Geraden über mittlere 80% der Linie, bezogen auf homogenes Linienprofil
⁽⁶⁾ Linienhomogenität	Maximale relative optische Leistungsunterschiede über mittlere 80% der Linie, bezogen auf homogenes Linienprofil

LINIENDICKE VS. FOKUSABSTAND*

TIEFENSCHÄRFE VS. FOKUSABSTAND*

Fokusabstand / mm

Wellenlänge	Ausgangsleistung (bis zu)	Berechnungsfaktor für Liniendicke		DOF Berechnungsfak	tor für Tiefenschärfe
(nm)	(mW)	elp	slp	elp	slp
405	900	0,83	0,84	1,01	1,53
450	1300	0,84	1,25	0,96	2,32
	2500	1,00	1,09	1,17	1,02
520	800	0,90	0,87	1,06	1,77
640	500	0,96	1,11	1,06	1,53
	1000	0,84	0,91	0,99	1,49
660	1000	1,00	1,00	1,00	1,00
760	1700	1,12	1,42	1,22	1,89
808	1700	1,06	1,34	1,09	1,78
830	1700	1,02	1,27	1,05	1,71

Optikkonfigurationen für verschiedene Linienmerkmale sind erhältlich.

- slp: standard line Powell; Standard-Setup, mittlere Liniendicke und Tiefenschärfe
- elp : extended line Powell; Linien mit erweitertem Tiefenschärfebereich und dickeren Linien

In den oben abgebildeten Grafiken können die Werte für Liniendicke und Tiefenschärfe eines 660 nm-Lasers abgelesen werden. Um die entsprechenden Werte für eine andere Wellenlänge zu ermitteln, müssen die abgelesenen Werte mit dem Faktor in der Tabelle verrechnet werden.

Beispiel: 660 nm-Laser fokussiert auf 1 m Arbeitsabstand: Liniendicke ca. 95 µm (@ slp** Optik); Tiefenschärfe ca. 72 mm (Werte aus der Grafik)

Berechnung: 450 nm Laser (1300mW) fokussiert auf 1 m Arbeitsabstand: Liniendicke ca. 95 μ m x 1,25 = 119 μ m; Tiefenschärfe: ca. 72 μ m x 2,32 = 167 μ m

- * Werte der Tabelle bei homogenem Linienprofil
- ** Öffnungswinkel: 5° 90°

Software

Serielle Kommunikation I²C und RS-232

Funktionen (z. B.):

Statusabfrage Überwachung der Ausgangsleistung

Systemkonfiguration Digitale Modulation Intensitätskontrolle

Betriebszeitzähler (LD, Module)

Digitale Modulation

Maximale Frequenz	kHz	bis zu 200 kHz
Rise-time (Mod High → 90 %)	ns	< 500 ns
Fall-time (Mod Low → 10 %)	ns	< 350 ns
Signalpegel	V	VIL_max < +1,1 V VIH_min > +2,5 V
Max. Spannungsbereich	VDC	0 - 30 VDC

Analoge Modulation

Maximale Bandbreite	Hz	< 10
Linearität	%	< 5 (von 10 % zu 100 % der Laserleistung)
Aktiver Bereich	VDC	0 - 2
Impedanz	kΩ	240 zu interner VCC (3,6 V)
Max. Spannungsbereich	VDC	0 - 30

Umgebungsbedingungen

Temperature der Grundplatte	°C / °F	
Lagertemperatur	°C/°F	
Luftfeuchtichkeit	%	
Verlustwärme	W	

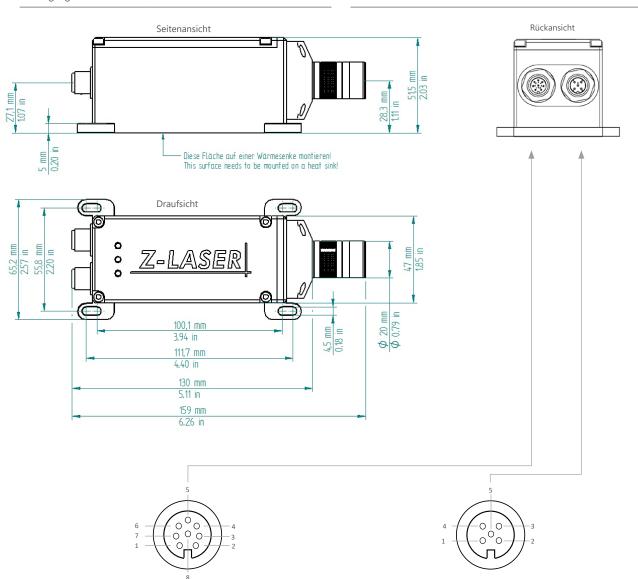
Schock und Schwingung

-10 °C bis +50 °C / 14 °F bis +122 °F

-40 °C bis +85 °C / -40 °F bis +185 °F

< 90 %, nicht kondensierend

Max. 3


Gemäß DIN EN 61373:2011-04, Kat. 2, Bahnanwendungen – Betriebsmittel von Bahnfahrzeugen – Prüfungen für Schwingung und Schock (IEC 61373:2010)

Mechanische Spezifikationen

Gewicht	kg / lbs
Abmessungen	mm / inch
Kopf-Durchmesser ø	mm / inch
Material	
Schutzklasse	
Befestigung	

0,69 / 1,52 159 x 65.2 x 51.5 6.26 x 2.57 x 2.03 / 0,79 Aluminium (schwarz eloxiert/blau lackiert), Optikkopf: Edelstahl IP 67 4x M4 Schrauben

M12 8-Pin: A-Pining Steckverbinder

1	RX IN (RS-232)
2	TX OUT (RS-232)
3	SCL (I ² C)
4	SDA (I ² C)
5	RDY FAIL OUT
6	System Enable OUT
7	GND
8	System Enable IN

M12 5-Pin: A-Pining Steckverbinder

1	12-24 VDC, 40 VA
2	Digital-Modulation TTL
3	GND
4	Analog-Modulation (0-2 VDC)
5	Fail out (open-drain)